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Abstract. A short discussion concerning the lattice QCD approach to physics of hadrons is made to non-
specialists. A special attention is given to topics that are of particular interest to the nuclear physics
community.

PACS. 11.15.Ha Lattice Gauge Theory – 12.39.Fe Chiral Lagrangians

1 Why lattice QCD?

One of the most important questions that still remains
to be answered is to explain how hadrons arise from the
QCD lagrangian

LQCD =
1
4
F a

µνF a
µν

+
∑

q=u,d,s,...

q̄
{
γµ

(
∂µ + gAa

µta
)

+ mq

}
q . (1)

The dynamics that governs the confinement of quarks and
gluons into hadrons is of notoriously nonperturbative na-
ture for which an analytic treatment is still missing. Al-
though various quark models help understanding quite a
number of phenomena of hadronic interactions, it should
be stressed that a covariant quark model that solves simul-
taneously confinement and spontaneous chiral symmetry
breaking has never been constructed. Other than quark
models, much effort has been put in building the effec-
tive theories of QCD, valid for specific ranges of low en-
ergy scale. Those theories are built upon some symmetry
property of the QCD lagrangian in some specific limit.
The most prominent example is the chiral (left↔right)
symmetry, SU(Nf )L ⊗ SU(Nf )R, that is manifest when
the quarks are massless. That symmetry is spontaneously
broken down to SU(Nf )V , resulting in the appearance
of N2

f − 1 Goldstone bosons (‘pions’). Chiral perturba-
tion theory (ChPT) provides us with an effective descrip-
tion of QCD that incorporates these features and, in ad-
dition, allows one to account for the explicit chiral sym-
metry breaking corrections, namely those generated by
the non-zero quark mass terms in the QCD lagrangian.
The computation of such corrections, unfortunately, gen-
erates a bunch of low energy constants that are supposed
to be obtained from the matching procedure of appro-
priately chosen amplitudes computed both in ChPT and
in QCD, at some energy scale at which ChPT can be
trusted and at which direct QCD computations can be

made. This is where lattice QCD is expected to provide
information to the QCD piece in this matching. In the
above discussion Nf stands for the number of light quark
flavors. Today we are confident that ChPT provides an ad-
equate framework to describe the dynamics of strange-less
hadrons (Nf = 2), whereas the situation with the strange
quark (ms) is still unclear [1]. This is not only because ms

is about 25 times larger than mq = (mu + md)/2mu [2],
but also because it is not much smaller than the hadronic
QCD scale, Λ

MS (Nf =3)
QCD = 336+42

−38 MeV [3]. What do we
know about ms? This is one of the highlights of the lat-
tice QCD achievements over the past decade which is why
I decided to briefly discuss it here. That discussion will
also allow me to introduce the methodology but also the
challenges of lattice QCD.

1.1 Lattice QCD and the strange quark mass

The numerical solution to the problem in hands, namely to
compute the hadronic spectra numerically from the QCD
lagrangian only (1), does exist. The crucial first step in
that direction is to make the analytic continuation to the
euclidean metric (xM

0 → ixE
0 ), in which the QCD gener-

ating functional reads

Z[A, q, q̄] =
∫

DADqDq̄ exp{−S[A, q, q̄]} . (2)

In euclidean space the QCD action is real and bounded
from below. Discretization of the euclidean space and
time, L = NSa and T = Nta, allows for an equiva-
lence between the generating functional and the partition
function, so that the Monte Carlo methods can be em-
ployed. SU(3) gauge fields are placed on the links of the
lattice whereas the quark degrees of freedom are sitting
on the sites. A particularly important feature, while dis-
cretizing the QCD action, is that the gauge invariance
is preserved at every stage of calculation. The price to
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pay is that the lattice spacing a �= 0 breaks the Lorentz
invariance, which is however recovered once we take the
continuum limit, a → 0 (i.e. after we send the UV cut-off
to infinity). Finally, after the continuum limit has been
taken appropriately, we should worry about the finite vol-
ume effects and work out the limit L, T → ∞ (i.e. send
the IR regulator to zero). This is a very challenging task
for numerical simulations, and it requires a lot of clever
ideas and a huge computing power. What is important
to retain is that –in principle– the QCD simulations on
the lattice offer a first principle approach to the physics
of hadrons. In other words the solution to nonperturba-
tive QCD is provided without introducing any additional
parameter except for those that appear in the QCD la-
grangian, namely the quark masses and the SU(3)c gauge
coupling. In practice, however, various approximations are
often necessary in order to make the calculation feasible on
the present day computing resources. Importantly though,
all those approximations are controllable and, for the most
part, we can get rid of them by increasing the computing
power. The most infamous (least controllable) is the so-
called quenched approximation. It consists in neglecting
the dynamical quark loops while producing the gauge field
configuration. This is certainly a serious drawback of the
most of currently available lattice results, but it neverthe-
less make a good case for developing the methodology for
the computation of various physical quantities on the lat-
tice. One way to compute the quark mass on the lattice is
via the axial Ward identity 1, ∂µAµ(x) = 2mqP5(x). One
computes the following two correlation functions:

〈
∑

x

∂µ q̄(x)γµγ5q(x)
︸ ︷︷ ︸

Aµ(x)

O(0)〉 and 〈
∑

x

q̄(x)γ5q(x)︸ ︷︷ ︸
P5(x)

O(0)〉 ,

where O is a bilinear quark operator with quantum num-
bers JP = 0−, and after having properly renormalized
the axial current and the pseudoscalar density, the ra-
tio of these two correlation functions gives the quark
mass. Various ways to nonperturbatively renormalize the
composite quark operators on the lattice have been de-
veloped (see [4]) and they are implemented in most of
the present day quark mass calculations. Besides the ra-
tio of the above correlation functions, from the exponen-
tial dependence of the second correlator one can read
off the corresponding pseudoscalar meson mass. At this
point it should be stressed that the lattice results are
consistent with the Gell-Mann–Oakes–Renner (GMOR)
formula, m2

PS = 2B0mq. Surprisingly, however, although
the GMOR formula is expected to be valid for very small
quark masses (it receives the m2

q-corrections and higher),
the lattice QCD results (with Wilson fermions) display a
rather impressive consistency with the leading GMOR for-
mula while working with heavy pions (m2

PS ≥ 500 MeV).
The strategy to reach the physical quark mass is to tune
the quark mass in the QCD action in such a way that
the corresponding pseudoscalar meson mass coincides with
the physical kaon mass. The resulting strange quark mass

1 For alternative strategies and lattice actions to compute
the strange quark mass, please see [5].

Table 1. Strange quark mass obtained from the quenched
QCD simulations on the lattice. Results by various collabo-
rations [6] refer to the continuum limit (a → 0)

collaboration mMS
s (2 GeV)

JLQCD 106(7) MeV
Alpha & UKQCD 97(4) MeV
QCDSF 105(4) MeV
CP-PACS 111+3

−4 MeV
SPQcdR 106(2)(8) MeV

by various lattice collaborations have been obtained by
means of high statistics simulations, by implementing the
non-perturbative renormalization on fine grained lattices,
so that the continuum limit could be taken. Finite volume
effects have also been examined and shown to be tiny, i.e.,
at the level much smaller than the errors they quote. The
results, listed in Table 1, are obtained in the quenched ap-
proximation. Important qualitative outcome from the lat-
tice studies is that the quark masses are indeed small and
that the light hadron masses are mostly due to QCD inter-
action rather than to their valence quark content. Finally
notice that the first lattice studies in which the effects
of dynamical quarks are included show that the strange
quark mass gets even smaller [7], but we are not yet at the
stage of providing the precision unquenched computation
of ms.

2 Hadron spectrum

Lattice QCD is particularly well suited to study the spec-
tra of hadrons. In the previous section we already men-
tioned that the pseudoscalar meson masses were neces-
sary to identify the strange quark mass. One can also
study the correlation functions with the interpolating bi-
linear quark operators carrying other quantum numbers
and thus extract the vector, axial-vector, tensor and even
scalar mesons (for the last the valence quarks should be
non-degenerate in order to have the correlator with a dis-
cernible signal).

2.1 Glueballs

In spite of the quenched approximation, some long stand-
ing problems can still be tackled. One such a problem
is the existence of the mass gap in the pure Yang–Mills
theory. This problem is stated as one of Seven Millenium
Math Prize Problems [9], to which an analytical solution
is missing. On the other hand, many lattice analyses per-
formed so far show that the glueball states indeed exist.
Nowadays even the spectrum of such states has been es-
tablished. This is a very important prediction of lattice
QCD. The spectrum shown in Fig. 1, is given in multi-
ples of r0, a quantity that is defined from the condition
r · dV (r)/dr|r=r0

= 1.65 [10], where V (r) is the potential
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Fig. 1. The spectrum of glueball states as established from the
extensive quenched lattice QCD simulations in [8]. The widths
of the lines reflect the error bars of lattice results

between two infinitely heavy quarks, which can be (and
has been) accurately studied on the lattice. To convert to
physical units, a commonly assumed value is r0 = 0.5 fm
(or r0 = 2.5 GeV−1).

2.2 Baryons

As we already mentioned, from the exponential fall-off of
various correlation functions (made with various interpo-
lating operators consisting of quark and gluon fields), one
can extract the hadron masses with quantum numbers car-
ried by the considered composite operator. The operators
used to extract the proton mass (and its coupling to these
interpolating operator) are

J(x) = εabc
[
uT

a (x)Cγ5db(x)
]
uc(x),

J̃(x) = εabc
[
uT

a (x)Cdb(x)
]
γ5uc(x), (3)

where C stands for the charge conjugation operator. Neu-
tron mass is simply obtained by replacing one u quark
by d, whereas the Ξ state arise after replacing u and
d by two s quarks, and so on. The spectrum of lowest
baryon states computed on the lattice is shown in Fig. 2.
Strange quark mass is fixed from the physical kaon mass,
as explained in the previous section. The most striking
feature of that plot is that the baryon spectrum, as de-
duced from the quenched simulations is essentially un-
changed after unquenching the QCD vacuum fluctuation
by Nf = 2 dynamical quarks. This probably indicates
that the most significant effect of quenching has been ab-
sorbed in the conversion of results from the lattice to phys-
ical units. Second important feature is the nucleon mass
that in both cases is larger than that of the physical nu-
cleon. To discuss the reasons for that effect we should

Fig. 2. The spectrum of baryons produced by JLQCD both
in quenched (Nf = 0) and in unquenched (Nf = 2) QCD [11].
Physical (experimentally established) masses [12] are marked
by the horizontal lines

stress that the nucleon mass is not obtained directly on
the lattice but rather after a long extrapolation. This is
so because the lattice simulations are performed with the
light quarks mq ≥ mphys

s /2, with mq ≡ mu = md, while
the physical limit is mq/ms = 0.04. Since the sector of
light quark masses over which one has to extrapolate is ex-
pected to be highly sensitive to the effects of spontaneous
chiral symmetry breaking, it is not enough to extrapolate
the linear (or quadratic) quark mass dependence observed
with the directly accessible quarks (i.e. in the ‘heavy pion
world’). Therefore, the task, that the lattice community
approached very seriously, is to reduce the value of simu-
lated quark (‘pion’) masses. The trouble is that reduction
is very costly in computing power. Even if we manage to
create clever algorithms to work closer to the chiral limit
the artifacts due to finiteness of the lattice size (L) become
more pronounced and the chiral extrapolations should be
made by using the formulae derived by using the chiral
perturbation theory in the finite volume. That issue at-
tracted quite a bit of attention in the lattice community
over the past couple of years [13]. In the case of nucleon,
the leading order chiral lagrangian

L(1)
N = Ψ̄ (iγµDµ − m0) Ψ +

1
2
gAΨ̄γµγ5ξ

µΨ, (4)

is consisted of the nucleon field Ψ , the covariant derivative
Dµ = ∂µ + 1

2 [ξ†, ∂µξ], in which the Goldstone boson fields
enter via Σ = ξ2, and ξµ = iξ†∂µΣξ†. The standard axial
coupling is used, gA = 1.2. One-loop chiral corrections to
the self energy of the nucleon propagator produce the shift
to the bare nucleon mass, m0, as

mN = m0 − 4c1m
2
π − 3πg2

A

(4πfπ)2
m3

π

+
[
C(Λ) − 3g2

A

2m0

1
(4πfπ)2

(
1 + log

m2
π

Λ2

)]
m4

π + . . . (5)
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Fig. 3. The chiral extrapolation of the lattice QCD results
with Nf = 2. Solid and dashed curves correspond to the so-
called infrared regularization and to the non-relativistic treat-
ment of the nucleon. For more information, please see [15]

where C(Λ) is the counter-term which cancels the Λ-de-
pendence that otherwise arises from the renormalization of
the ultraviolet divergences in the chiral loops. It turns out,
however, that the two conventional descriptions lead to
quite different results when applied to the lattice data with
Nf = 2, and that they coincide only for very light pions,
namely mπ 
 mN [14,15]. This is shown in Fig. 3 where
the solid curve indicates the fit to lattice data and by using
the expressions derived by means of the so-called infrared
regularization [16]. The non-relativistic treatment [17] is
depicted by the two dashed lines corresponding to two spe-
cific choices of parameters c1 and m0. Besides providing
the guidelines to extrapolate to the physically interesting
limit for nucleons, ChPT is also useful in estimating the
impact of the effects of the finiteness of the lattice box. It
verifies the general Lüscher formula [18] and provides the
corrections to it. That highly useful aspect of ChPT has
been extended to other quantities involving baryons [19].
Important to retain is that the chiral logarithmic behav-
ior gets enhanced by the finiteness of the lattice box. This
makes the chiral extrapolations ever more delicate: physi-
cal chiral logarithms are mostly drowned in the finite size
effects, and therefore one does not only seek the range of
quark masses in which the ChPT are valid description of
the lattice data, but one also has to disentangle the finite
size effects from physical chiral logarithms (former being
often overwhelming compared to the size of the latter).

Finally, it should be noted that the above discussion
refers to the so-called p-regime (i.e., with mπL � 1). A
probably viable alternative has been recently proposed
in [20] where it is claimed that the ε-regime (mπL 
 1)
might be helpful in discerning the finite volume behavior
and thus extract the terms involving the low energy con-
stants, such as C(Λ) in (5). Clearly, whatever the regime
is considered (p or ε), one should make sure that the
ChPT formulas provide the fiducial description of the lat-
tice data, and only then claim the extraction of the low
energy constants reliable. That is very difficult and very
CPU-consuming, so that the question of reliable chiral
extrapolation will remain a very hot research topic in the
lattice community for quite some time.

Fig. 4. Results for the orbital (upper plot) and radial (lower
plot) excitations as a function of the pion mass directly acces-
sible from the quenched QCD simulations on the lattice. For
more details please see [21]

2.3 Fuss about the Roper resonance

The experimental phenomenon for which the hadron phy-
sics phenomenologists do not have a viable explanation is
the lightness of the radially excited state with quantum
numbers of the nucleon (JP = 1

2
+), also known as Roper

resonance. The puzzle is that its mass, mN ′ ≈ 1.44 GeV,
is smaller than that of the first orbital excitation, mÑ ≈
1.535 GeV, which contradicts most of the mass formu-
lae derived by various forms of constituent quark model
which suggest mN ( 1

2
+) < mÑ ( 1

2
−) < mN ′( 1

2
+). That is-

sue attracted quite a bit of attention recently since some
lattice QCD simulations claimed to have found the solu-
tion to that puzzle. A special care should be devoted to
choosing a good interpolating field, i.e. the one that al-
lows a good overlap with the orbital excitation JP = 1

2
−

(also known as S11) as discussed in [21]. The results of
that paper, along with those provided by other lattice
groups [22], are shown in Fig. 4. In the region of quark
masses directly accessed from the lattice studies, the mass
pattern is consistent with quark models, i.e., mN ( 1

2
+)
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Fig. 5. Results of [23]. Plot similar to those shown in Fig. 4

< mÑ ( 1
2

−) < mN ′( 1
2
+), although the mass difference,

mN ′( 1
2
+) − mÑ ( 1

2
−), appears to be smaller as the quark

mass is lowered. If naively extrapolated to the chiral limit,
the level crossing can be envisaged too, i.e. after extrap-
olation mN ′( 1

2
+) − mÑ ( 1

2
−) may become negative. That

is what [23] claimed to see from their lattice study (see
Fig. 5). However, as we saw with the nucleon mass, one
should make sure that the finite volume effects and the
chiral behavior is well under control. While for the nu-
cleon mass the help in that respect comes from ChPT,
there is no such effective theory that provides a similar
help for the nucleon excitations. For those reasons I per-
sonally think that one should make a better control over
various sources of systematic uncertainties in the lattice
study of excited nucleons before claiming to observe the
level crossing between the nucleon’s orbital and radial ex-
itations. This is the point at which one should mention
that the clean extraction of the mass of radially excited
state has been for a long time a subject to controversies in
the lattice community. A recent proposal of [24] provides
a possible remedy. The idea is simple and it consists to
consider the standard correlation function

G(t) = 〈
∑

x

J(x)J†(0)〉 =
∞∑

i≥0

Z2
i e−mit. (6)

We need not only to disentangle the excitations from the
leading/dominant contribution (i.e. the one to the ground
state), but – of all excitations– we want to isolate the
piece corresponding to the first radial excitation only. The
proposal of [24] is to consider

Ĝ(t) = G(t + 1)G(t − 1) − G(t)G(t)

= 2
∞∑

j>i=0

ZiZje
−(mi+mj)t , (7)

so that for large time separation the ground state con-
tributes less, and the first radial excitation is then more
accessible. The first numerical studies also seem to be en-
couraging in that respect.

3 Generalized parton distributions (GPD)

Lattice QCD also offers the possibility to study the matrix
elements of the local operators sandwiched by the hadron
states. This is particularly important for the studies of
the CP-violation in the Standard Model. For the recent
review on that topic, see [25].

A particularly interesting case to the nuclear physics
community is the possibility to get some information
about the GPD’s of the nucleon. In particular, the ma-
trix elements needed to study the 1st moment have been
studied by two lattice groups [26,27].

〈P ′|Oq
{µν}|P 〉 ≡ i

2
〈P ′|q̄γ{µ

↔
Dν}q|P 〉

= Aq
2(∆

2)ū(p′)γ{µ p̄ν}u(p)

−Bq
2(∆2)

i

2mN
ū(p′)∆ασα{µ p̄ν}u(p)

+Cq
2(∆2)

1
mN

ū(p′)u(p)∆{µ ∆ ν}, (8)

where ∆ = p − p′, and the operator is traceless and
symmetrised over the indices in the curly brackets. The
form factors A2, B2 and C2 can be extracted for sev-
eral kinematic configurations which then allows one to
study their ∆2-dependence. Both groups fit their data
(X = A2, B2, C2) to a dipole ansatz

X(∆2) =
X(0)

(1 − M2
X/∆2)2

, (9)

that unfortunately does not provide us with more insight
in physical mechanism that governs the ∆2-dependence. 2

It should be stressed, however, that the calculation of
the above matrix elements on the lattice is demanding
for many reasons. One of the most involving problems is
renormalization of the operators on the lattice containing
the covariant derivative. The reason is that at non-zero lat-
tice spacing the Lorentz group in Euclidean space SO(4)
is replaced by the group of discrete hypercubic rotations
H(4), which additionally complicates the renormalization
mixing pattern among various combinations of operators
with covariant derivatives.

Particularly interesting physics information from the
first lattice QCD studies of GPD’s is the fraction of the
total angular momentum of the nucleon carried by the
valence quarks. The total angular momentum of a quark
q in the nucleon can be expressed via [28]

Jq =
1
2

[Aq
2(0) + Bq

2(0)] . (10)

In [26], the following values have been reported: Au
2 (0) =

0.40(2), Ad
2(0) = 0.15(1), and Bu

2 (0) = 0.33(11), Bd
2 (0) =

−0.23(8), and therefore Ju = 0.37(6) and Jd = −0.04(4).
2 Resonances in the crossed t-channel are poles in the disper-

sion relations for these form factors. Apart from the convenient
fit formula, no reasonable physical significance could be given
to the resulting Mdipole

X .
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In other words, about 30% of the (quenched) proton’s an-
gular momentum is carried by the gluons. The situation
in the world with Nf = 2 dynamical quarks seems to show
that the fraction of the total angular momentum carried
by the valence quarks is even smaller. A more definite con-
clusion on this issue necessitates a more control over the
chiral extrapolations that are involved in these calcula-
tions.

4 Conclusion

In conclusion I would like to point out the main benefits
of the lattice QCD approach:

– Lattice QCD offers a unique possibility to study the
physics of hadrons on the basis of the QCD lagrangian
only.

– The high statistics numerical simulations of QCD on
the lattice have so far been done in the so called
quenched approximation. Nowadays more and more
studies are made by including the effects of dynam-
ical quarks.

– The methodology to extract the physically interesting
information from the data produced on the lattice is
developed in the world with heavy pions. It is highly
important to extend the range of directly accessible
quark masses on the lattice to lighter ones in order
to confront the quark mass dependence observed on
the lattice with the expressions obtained by means of
ChPT.

– Many phenomenologically relevant question in particle
physics have been studied by using lattice QCD. If we
are to make the precision calculation of hadronic quan-
tities on the lattice, we first need to solve the above
mentioned problems. More computing power, better
algorithms, more clever physical ideas and the com-
bination of all three aspects are essential in reaching
that goal.
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